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The exacerbated disease due to immune- and coagulative-mediated pulmonary injury during acute respiratory
viruses infection results in severe morbidity and mortality. Identifying novel approaches to modulate virus-
induced inflammation–coagulation interactions could be important alternatives for treating acute respiratory vi-
ruses infections. In this study we investigated the effect of the probiotic strain Lactobacillus rhamnosus CRL1505
on lung TLR3-mediated inflammation, and its ability to modulate inflammation–coagulation interaction during
respiratory viral infection. Our findings reveal for the first time that a probiotic bacterium is able to influence
lung immune-coagulative reaction triggered by TLR3 activation, by modulating the production of proin-
flammatory and anti-inflammatory cytokines as well as expression of tissue factor and thrombomodulin
in the lung. We also demonstrated that the preventive treatment with the probiotic bacteria beneficially
modulates the fine tune balance between clearing respiratory viruses (respiratory syncytial virus and influ-
enza virus) and controlling immune-coagulative responses in the lung, allowing normal lung function to be
maintained in the face of a viral attack. Our data also pinpoint a crucial role for IL-10 in the immune protec-
tion induced by L. rhamnosus CRL1505 during respiratory viral infections. These observations might be help-
ful to propose new preventive or therapeutic approaches to better control virus-inflammatory lung damage
using probiotic functional foods.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Influenza virus (IFV) and respiratory syncytial virus (RSV) are
common causes of upper respiratory tract infection and pneumonia.
Although several studies have examined the host inflammatory/immune
responses to these viruses, some investigations have demonstrated
an important role of the hemostatic system in the outcome of viral
respiratory infections. Besides inflammatory pathways, respiratory
viruses can trigger the coagulation system. They increase the expres-
sion of tissue factor (TF), the main initiator of coagulation, in endo-
thelial cells and monocytes inducing a prothrombotic state by
concurrent stimulation of coagulation and inhibition of fibrinolysis
[1–4]. Although enhanced coagulation may be considered host pro-
tective in containing the infection [5], excessive procoagulant activ-
ity may result in alveolar fibrin formation and enhancement of
inflammation and lung injury. Moreover, much information has
accrued demonstrating the close interaction of inflammation,
atherosclerosis and thrombosis. Several case–control studies have
repeatedly confirmed the common clinical observation that viral
respiratory tract infections often shortly precede or accompany
acute ischemic strokes or acute myocardial infarctions [6,7].
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Inflammatory and hemostatic alterations in respiratory viral
infections have been associated to double-stranded RNA (dsRNA)
intermediates produced during the replication of respiratory viruses
such as IFV and RSV, which are recognized by a variety of pattern-
recognition receptors (PRRs) in respiratory epithelial, endothelial and
immune cells, including Toll-like receptor (TLR)-3 and retinoic acid-
inducible gene I (RIG-I). In vivo studies using mice have demonstrated
that the viral-associated molecular pattern polyinosinic:polycytidylic
acid (poly(I:C)), treatment results in TLR3- and CXCR2-dependent
neutrophilic pulmonary inflammation, interstitial edema, bronchiolar
epithelial hypertrophy, and altered lung function [8,9]. These changes
were accompanied by elevated levels of proinflammatory cytokines
and type I interferons in broncho-alveolar lavages (BAL) [8] and, in-
creased airway epithelial cell TLR3 protein expression [9]. In addition,
studies have reported that poly(I:C) can upregulate TF and downregu-
late thrombomodulin (TM) expression on endothelial cells. Moreover,
in vivo application of poly(I:C) induces similar changes in the aortic en-
dothelium of mice and increases D-dimer levels indicating enhanced
coagulation and fibrinolysis [10].

Certain probiotic lactic acid bacteria (LAB) strains can exert their
beneficial effect on the host through their immunomodulatory activ-
ity. These strains, termed immunobiotics [11], have been used for the
development of functional foods with the ability to stimulate muco-
sal immunity. Moreover, studies have demonstrated that some
immunobiotic LAB can stimulate the common mucosal immune sys-
tem to provide protection in other mucosal sites distant from the gut
[12]. In this regard, several lines of evidence demonstrated that oral
administration of immunobiotics is able to increase resistance
against respiratory viral infections. It has been described that several
aspects of respiratory antiviral immunity can be beneficially modu-
lated by immunobiotics, including the production of type I inter-
ferons, the activity of NK cells, the generation of Th1 responses as
well as the production of specific antibodies and the regulation of in-
flammatory lung injury [11]. We recently initiated a series of studies
seeking to establish the capacity of Lactobacillus rhamnosus CRL1505
to improve respiratory antiviral immunity. Our research work has
demonstrated that mucosal (oral and nasal) administration of the
CRL1505 strain is able to beneficially modulate the immune response
triggered by TLR3 activation in the respiratory tract and to increase
the resistance to RSV challenge [13–15]. Moreover, L. rhamnosus
CRL1505 administration efficiently reduces inflammatory lung tissue
damage produced by poly(I:C) or RSV through its capacity to benefi-
cially modulate proinflammatory/IL-10 and Th1/Th2 balances in the
respiratory tract [13–15]. On the other hand, we demonstrated that
some immunobiotic strains such as L. casei CRL431 or L. rhamnosus
CRL1505 are able to beneficiallymodulate the inflammation–coagulation
interaction during respiratory infections, indicating that LAB is able to
modulate the immune-coagulative response [16–19]. Much research of
our group has been done on coagulation activation during severe bacteri-
al infections, and no data on themodulation of coagulation/inflammation
interaction by immunobiotics in viral infections are available.

The exacerbated disease due to immune- and coagulative-
mediated pulmonary injury during acute respiratory viruses infec-
tion results in severe morbidity and mortality. Then, identifying
novel approaches to modulate virus-induced inflammation–coagulation
interactions could be important alternatives for treating acute respirato-
ry viruses infections. In this sense, studying the effect of orally adminis-
tered immunobiotics on the immune-coagulative response triggered by
respiratory activation of TLR3 would contribute to the knowledge of
the mechanism of probiotics' protective effect against respiratory viral
infections. Therefore, the aim of the present studywas to deepen the un-
derstanding of themechanisms of L. rhamnosusCRL1505 immunoregula-
tory activity by evaluating a) its effects on lung TLR3-mediated
inflammation; b) its ability to modulate inflammation–coagulation
interaction; c) and its influence on the outcome of respiratory viruses
challenges.

2. Materials and methods

2.1. Microorganisms

Lactobacillus rhamnosus CRL1505 (Lr1505) and CRL1506 (Lr1506)
were obtained from the CERELA culture collection. The culture were
kept freeze-dried and then rehydrated using the following medium:
peptone, 15.0 g; tryptone, 10.0 g; meat extract, 5.0 g; and distilled
water, 1 l, pH 7. It was cultured for 12 h at 37 °C (final log phase) in
Man–Rogosa–Sharpe broth (MRS, Oxoid, Cambridge, UK). The bacteria
were harvested through centrifugation at 3000 ×g for 10 min and
washed 3 times with sterile 0.01 mol/l phosphate buffer saline (PBS),
pH 7.2, and resuspended in sterile 10% non-fat milk.

2.2. Animals and feeding procedures

Male 6-week-old BALB/cmicewere obtained from the closed colony
kept at Tohoku University. They were housed in plastic cages in a con-
trolled atmosphere (22 ± 2 °C temperature, 55 ± 2% humidity) with
a 12 h light/dark cycle. L. rhamnosus CRL1505 or CRL1506 were admin-
istered to different groups ofmice for 5 consecutive days at a dose of 108

cells/mouse/day in the drinking water, which is the optimal dose with
immunoregulatory capacities [20,21]. The treated groups and the un-
treated control group were fed a conventional balanced diet ad libitum.
All experiments were carried out in compliance with the Guide for Care
and Use of Laboratory Animals and approved by the Ethical Committee
of Animal Care at Tohoku University, Japan.

2.3. Intranasal administration of poly(I:C)

Mice were lightly anesthetized and 100 μl of PBS, containing 250 μg
poly(I:C) (equivalent to 10 mg/kg body weight), was administered
dropwise, via the nares. Control animals received 100 μl of PBS.Mice re-
ceived three doses of poly(I:C) or PBS with 24 h rest period between
each administration [13,14].

2.4. Lung tissue injury

Forty eight hours after the last poly(I:C) challenge, whole-lung sam-
ples from all experimental groups were excised and washed out with
PBS. Then, tissues were immersed in 4% (v/v) formalin saline solution.
Once fixed, samples were dehydrated and embedded in Histowax
(Leica Microsystems Nussloch GmbH, Nussloch, Germany) at 56 °C. Fi-
nally, lungs were cut into 4 μm serial sections and stained with hema-
toxylin–eosin for light microscopy examination. All slides were coded
and evaluated blindly. Albumin content, a measure to quantitate in-
creased permeability of the bronchoalveolar–capillarity barrier, and lac-
tate dehydrogenase (LDH) activity, an indicator of general cytotoxicity,
were also determined in the acellular BAL fluid 48 h post-challenge
[13,14]. Albumin content was determined colorimetrically based on al-
bumin binding to bromcresol green using an albumin diagnostic kit
(Wiener Lab, Buenos Aires, Argentina). LDH activity, expressed as
units per liter of BAL fluid, was determined bymeasuring the formation
of the reduced form of nicotinamide adenine dinucleotide (NAD) using
the Wiener reagents and procedures (Wiener Lab) [13,14].

2.5. Total and differential leukocyte counts in blood and bronchoalveolar
lavages

Blood samples were obtained by cardiac puncture from sodium
pentobarbital-anesthetized animals at 48 h post-challenge and were
collected in tubes containing EDTA as an anticoagulant. Total number
of leukocytes was determined with a hemocytometer. Differential cell
counts were performed by counting 200 cells in blood smears stained
with May-Grünwald Giemsa stain using a light microscope (1000×),
and absolute cell numbers were calculated [22]. A portion of the BAL

162 H. Zelaya et al. / International Immunopharmacology 19 (2014) 161–173



fluid was used to determine the total number of leukocytes using a he-
mocytometer. The remaining sample of fluid was centrifuged for
10 min at 900 ×g, the pellet was used to make smears, and differential
cell counts were performed by counting 200 cells stained with May-
Grünwald Giemsa. The supernatant fluid was frozen at−70 °C for sub-
sequent analyses.

2.6. Activation of blood neutrophils

Measurement of myeloperoxidase (MPO) activity of blood neutro-
phils was carried out by use of the Washburn test at 48 h post-
challenge, which is a cytochemical method that uses benzidine as an
MPO chromogen [23]. Cells were graded as negative or asweak, moder-
ate, or strongly positive according to the intensity of reaction and were
used to calculate the score. The score was calculated by counting 200
neutrophils in blood smears. The score value was calculated by the ad-
dition of neutrophils with different positive grades.

2.7. Cytokine concentrations in serum and broncho-alveolar lavages

Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10,
transforming growth factor (TGF)-β, and macrophage inflammatory
protein (MIP)-1α concentrations in serum and BAL, were measured at
48 h post-challengewith commercially available enzyme-linked immu-
nosorbent assay (ELISA) technique kits following the manufacturer's
recommendations (R&D Systems, MN, USA).

2.8. Coagulation tests

Blood samples were obtained as described before and collected in
a 3.2% (w/v) solution of trisodium citrate at a ratio of 9:1. Plasmawas
obtained according to Agüero et al. [24]. Prothrombin time (PT) and
activated partial thromboplastin time (APTT) were performed man-
ually on fresh plasma samples. PT was determined to evaluate the
extrinsic coagulation pathway; it was determined by a one-step
method (Thromborel S, Behningwerke AG, Marburg, Germany). Re-
sults are expressed as percentage of prothrombin activity (%) from a
calibration curve made from a pool of fresh plasma from normal mice
[16,17]. APTTwas determined to evaluate the intrinsic pathway of coag-
ulation. APTT was determined by mixing plasma with calcium chloride
and a partial thromboplastin reagent (STA APTT Reagent, Stago,
Asnières, France), and timing initial clot formation. Results are
expressed in seconds [16–19]. Thrombin–Antithrombin complexes
(TATc; markers of coagulation system activation) were measured in
BAL and plasma samples by the ELISA technique, according to the
manufacturer's instructions (TAT Complexes Mouse ELISA Kit, Abcam
Inc., UK).

2.9. Platelet counts

Blood samples were obtained as described for the leukocyte count.
Manual platelet countingwas performedby visual examination of diluted
whole blood with 1% (w/v) aqueous ammonium oxalate. The total
number of platelets was determined with a hemocytometer [16–19].

2.10. Determination of von Willebrand factor (vWF) in plasma and BAL

vWF was measured in plasma and BAL samples by ELISA. In brief,
plates were coated with rabbit anti-human vWF (DakoCytomation
Denmark A/S) overnight at 4 °C, and blockedwith 1% bovine serum albu-
min. Samples and standard curvewere incubated for 2 h at room temper-
ature. Peroxidase-conjugated anti-human vWF/FVIII (DakoCytomation
Denmark A/S) was added and incubated for 1 h at room tempera-
ture. The reaction was developed with ortophenylendiamine (Ortho-
Diagnostic System) and was stopped with 2 N H2S04. The optical
density (OD) at a wavelength of 490 nm was determined. OD shown

by the background controls was subtracted from the OD of each sample.
Samples and each point of standard curvewere performed by duplicate.
Results are expressed as percentage of vWF (%) from a calibration curve
[25].

2.11. Immunohistochemistry in lung histological slides

At prechosen intervals, whole-lung samples frommice were asepti-
cally removed and processed following Sainte-Marie's technique [26].
Once fixed, the samples were dehydrated, embedded in Histowax
(Leica Microsystems Nussloch GmbH, Nussloch, Germany) at 56 °C
and cut into 4 μm serial sections. Lung sections were deparaffinized
and endogenous peroxidase activity was quenched with a solution of
methanol/0.03% H2O2 (Merck, Buenos Aires, Argentina). The sections
were washed with PBS and then exposed to rat anti-mouse vascular
cell adhesionmolecule 1 (VCAM-1, CD106, BD, Biosciences Pharmingen,
San Diego, CA, USA). After washing, the slides were incubated with a
secondary antibody (mouse anti-rat IgG peroxidase conjugate,
Sigma-Aldrich Co, Saint Louis, MO). Peroxidase activity was detected
with a 3,3′-diaminobenzidine peroxidase substrate solution (DAB,
Sigma-Aldrich Co, Saint Louis, MO), after which a light counterstain
with hematoxylin was performed. The results of the reaction were
analyzed, taking into account the intensity (classified as mild, mod-
erate, or strongly positive) and distribution in the pulmonary
endothelia.

2.12. Quantitative expression analysis by real-time PCR

Two-step real-time quantitative PCR was performed to characterize
the expression of tissue factor (TF), tissue factor pathway inhibitor
(TFPI), plasminogen activator inhibitor (PAI)-1, and thrombomodulin
(TM) mRNAs in lung. Total RNA was isolated from each sample using
TRIzol reagent (Invitrogen). All cDNAs were synthesized using a
Quantitect reverse transcription (RT) kit (Qiagen, Tokyo, Japan) accord-
ing to the manufacturer's recommendations. Real-time quantitative
PCR was carried out using a 7300 real-time PCR system (Applied
Biosystems, Warrington, United Kingdom) and the Platinum SYBR
green qPCR SuperMix uracil-DNA glycosylase (UDG) with 6-carboxyl-
X-rhodamine (ROX) (Invitrogen). The following primers were used:
TF (sense: 5′-CAA TGA ATT CTC GAT TGA TGT GG-3′; antisense: 5′-
GGA GGA TGA TAA AGA TGG TGG C-3′); TFPI (sense: 5′-ACT GTG TGT
CTG TTG CTT AGC C-3′; antisense: 5′GTT CTC GTT CCC TTC ACA TCC C-
3′); PAI-1 (sense: 5′-AGG TCAGGA TCGAGG TAAACGAG-3′; antisense:
5′-GGA TCG GTC TAT AAC CAT CTC CGT-3′); TM (sense: 5′-AGT GTG
CCA GTT CAT AAG AAT C-3′; antisense: 5′-AGT GTG CCA GTT CAT AAG
AAT C-3′). The PCR cycling conditions were 2 min at 50 °C, followed
by 2 min at 95 °C, and then 40 cycles of 15 s at 95 °C, 30 s at 60 °C,
and 30 s at 72 °C. The reaction mixtures contained 5 μl of sample
cDNA and 15 μl of master mix, which included the sense and antisense
primers. Expression of β-actin was used to normalize cDNA levels for
differences in total cDNA levels in the samples.

2.13. Viruses and infection

Human RSV strain A2 was grown in Vero cells as described by
[27]. Briefly, Vero cells were infected with RSV at a multiplicity of in-
fection (MOI) of 1 in 5 ml of Dulbecco's modified Eagle's medium
(DMEM). Cells were infected for 2.5 h at 37 °C and 5% CO2. After in-
fection, 7 ml of DMEM with 10% fetal bovine serum (FBS, Sigma,
Tokyo, Japan), 0.1% penicillin–streptomycin (Pen/Strep) (Sigma,
Tokyo, Japan), and 0.001% ciprofloxacin (Bayer) was added to the
flask. Flasks were incubated until extensive syncytium formation
was observed. Then, cells were scraped from the flask and sonicated
three times, 5 s per time, at 25 W on ice. Cell debris was removed by
centrifugation at 700 × g for 10 min at 4 °C. Virus supernatant was
sucrose density gradient purified and stored in 30% sucrose at −80 °C.
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Uninfected flasks were treated identically to generate Vero cell lysate
control. For in vivo infection, mice were lightly anesthetized with
isoflurane and intranasally challenged with 2.4 × 106 plaque-forming
unit (PFU) of RSV strain A2.

Influenza virus A/PR/8/34 (H1N1) was propagated in Madin–Darby
canine kidney (MDCK) cells, and virus titers in the stock solution were
determined by a plaque assay [28]. MDCK cells were grown and main-
tained in Eagle's minimum essential medium supplemented with 2%
and 5% heat-inactivated fetal bovine serum, respectively. Mice were in-
tranasally infected or mock-infected with 500 PFU of the A/PR/8/34
strain in 25 μl of PBS.

2.14. RSV immunoplaque assay

Lung tissue was removed without BAL harvest and stored in 30%
sucrose for plaque assay. Lungs were homogenized using a pellet
pestle and centrifuged at 2600 ×g for 10 min at 4 °C to clarify super-
natant. Twenty-four-well tissue culture plates were seeded with
1.5 × 105 Vero cells/well in DMEM containing 10% FBS, 0.1% Pen/
Strep, and 0.001% ciprofloxacin. Cells were incubated overnight at
37 °C and 5% CO2. Mediumwas removed from confluent monolayers,
and serial dilutions of lung tissue-clarified supernatants were

absorbed to monolayers. All samples were run in triplicate wells.
Plates were incubated at 37 °C and 5% CO2 for 2.5 h for optimum in-
fection. After incubation, supernatant was removed, and 1 ml of fresh
DMEMcontaining 10% FBS, 0.1% Pen/Strep, and 0.001% ciprofloxacinwas
overlaid onmonolayers.When extensive syncytia developed, the overlay
was removed andmonolayers were fixed with 1 ml of ice-cold acetone:
methanol (60:40). Primary RSV anti-F (clones 131-2A; Chemicon) and
anti-G (Mousemonoclonal [8C5 (9B6)] to RSV glycoprotein, Abcam) an-
tibodies were added to wells for 2 h, followed by secondary horseradish
peroxidase anti-mouse immunoglobulin antibody (anti-mouse IgG,
HRP-linked Antibody #7076, Cell Signaling Technology) for 1 h. Plates
were washed twice with PBS containing 0.5% Tween 20 (Sigma) after
each antibody incubation step. Individual plaques were developed
using a DAB substrate kit (ab64238, Abcam) following manufacturer's
specifications. Results for immunoplaque assay were expressed as
log10 PFU/g of lung.

Lungs in influenza-infected mice were treated similarly. Lung ho-
mogenates were centrifuged at 3000 rpm for 15 min, and the virus
yield in the supernatant was determined by the plaque assay on
MDCK cells as described by Takeda et al. [29]. Briefly, confluent mono-
layers ofMDCK cells were incubatedwith the supernatant serially dilut-
ed in PBS containing 1% bovine serum albumin for 1 h at room
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temperature. Then the cells were overlaid with nutrient agarose (0.8%)
medium and cultured at 37 °C for 3 days. The cells were fixed with 5%
formalin solution and stainedwith 0.03%methylene blue solution. Visu-
alized plaques were counted under a dissecting microscope.

2.15. Blocking experiments

In order to evaluate the role of IL-10 in the protective effect of
L. rhamnosus CRL1505, anti-IL-10 receptor (IL-10R) blocking antibodies
were used. Different groups of mice were orally treated with
L. rhamnosus CRL1505 for 5 consecutive days at a dose of 108 cells/
mouse/day as described above. On day 6 the mice were injected intra-
peritoneally with 50 μg of purified anti-IL10R antibodies (LEAF™ Puri-
fied anti-mouse IL-10R Antibody) or 250 μg isotype control antibodies
(LEAF™ Purified Rat IgG1, κ Isotype Ctrl) and 2 h later they were chal-
lenged with RSV or IFV. Virus titer, BAL TATc and TM and TF expression
were determined as described previously.

2.16. Statistical analysis

Experiments were performed in triplicate and results were
expressed as mean ± standard deviation (SD). After verification of
the normal distribution of data, 2-way ANOVA was used. Tukey's
test (for pairwise comparisons of the means) was used to test for
differences between the groups. Differences were considered signif-
icant at P b 0.05.

3. Results

3.1. L. rhamnosus CRL1505 reduces poly(I:C)-induced lung damage

We studied the lung tissue damage by evaluating lung histology and
biochemicalmarkers of alveolar–endothelial barrier alteration and cellu-
lar lysis. As we demonstrated previously, poly(I:C) significantly in-
creased levels of albumin concentrations as well as LDH activity in BAL
samples (Fig. 1A) [13,14]. Moreover, we showed here that challenge
with poly(I:C) induced a clear tissue inflammation around alveoli and
blood vessels in lung, with a significant reduction of gas exchange
space in some regions of lungs (Fig. 1B). Lr1505 treatment decreased sig-
nificantly the biochemical parameters that we use to evaluate pulmo-
nary damage, whereas Lr1506-treated mice showed lung injuries
similar to those observed in the control group (Fig. 1A). In addition,
Lr1505 treatment significantly reduced inflammation and lung tissue al-
terations (Fig. 1B)while Lr1506was not able to significantlymodify lung
alterations.

3.2. L. rhamnosus CRL1505 differentially modulates poly(I:C)-triggered
respiratory inflammation

Total and differential leukocyte counts and the levels of cytokines in
BAL were evaluated in order to study the respiratory inflammatory re-
sponse (Fig. 2A). Challenge with poly(I:C) significantly increased the
number of macrophages and neutrophils in the respiratory tract of all
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the experimental groups (Fig. 2A). Lr1505 treated mice presented sig-
nificantly higher values of inflammatory cells than Lr1506 and control
mice (Fig. 2A). In addition, nasal administration of poly(I:C) significant-
ly increased respiratory levels of the proinflammatory mediators IL-6,
TNF-α, IL-1β, IL-8 andMIP-1,which correlatedwith the increased levels
of inflammatory cells (Fig. 2B). No differences were observed between
the lactobacilli-treated mice and controls when analyzing IL-1β levels
(Fig. 2B). However, levels of IL-6, TNF-α, IL-8 and MIP-1 were signifi-
cantly lower in the Lr1505 groupwhen comparedwith Lr1506 and con-
trol mice (Fig. 2B). IL-10 and TGF-β in BAL were also increased after the
challenge with poly(I:C) in all the experimental groups; however
Lr1505mice showed higher levels of BAL IL-10 than Lr1506 and control
mice (Fig. 2B).

3.3. L. rhamnosus CRL1505 differentially modulates poly(I:C)-triggered
systemic inflammation

Blood leukocyte counts were next evaluated in order to study the
systemic inflammatory response. Challenge with poly(I:C) significantly
increased the number of leucocytes and neutrophils in blood (Fig. 3A).
The numbers of these cell populations were superior in Lr1505 and
Lr1506 treatedmicewhen compared to the control (Fig. 3A). In addition
to the quantitative changes of blood neutrophils, we studied MPO as a
measure of their activity. Challenge with poly(I:C) significantly in-
creased MPO activity in blood neutrophils of all the experimental
groups; however Lr1505 and Lr1506 mice showed MPO scores that
were significantly higher than the control group (Fig. 3A). On the

other hand, nasal challenge with poly(I:C) increased cytokines levels
in serum (Fig. 3B). Lr1505 treated mice showed higher levels of IL-6,
and a decreased production of TNF-α, IL-8, IL-1β andMIP-1 when com-
pared to Lr1506 and control mice (Fig. 3B). In addition, Lr1505 group
showed higher levels of serum IL-10 after the poly(I:C) challenge
(Fig. 3B).

3.4. L. rhamnosus CRL1505 reduces coagulation activation after poly(I:C)
challenge

Global coagulation tests in plasma were next evaluated in order to
study the systemic hemostasis. Challengewith the poly(I:C) significant-
ly decreased prothrombin activity in Lr1506mice and the control group,
while this parameter was close to 100% in Lr1505 treated mice (Fig. 4).
On the contrary, no modifications in the APTT test were observed after
challenge with the poly(I:C) in all the experimental groups (Fig. 4). In
order to study the systemic coagulation activation state, we determined
the concentration of TATcwhich are consideredmarkers of in vivo coag-
ulation activation. Normal values of TATc in plasma of mice are
4.5 ± 0.5 μg/l. Challengewith the poly(I:C) significantly increased plas-
ma TATc levels; however Lr1505 treated mice showed levels of TATc
that were significantly lower than the Lr1506 treatedmice and the con-
trol group (Fig. 4). On the other hand, the nasal challengewith poly(I:C)
slightly increased platelet counts in blood. Lr1505 and Lr1506-treated
mice show significant higher numbers of platelets than the control
group (Fig. 4). Finally, we determined vWF in plasma and observed
that poly(I:C) challenge significantly increased this parameter,

A 
10

9  
ce

lls
 / 

L
 

B 

10
9  

ce
lls

 / 
L

 

10
9  

ce
lls

 / 
L

 

Sc
or

e 

Control Lr1506 Lr1505 Control Lr1506 Lr1505 Control Lr1506 Lr1505 Control Lr1506 Lr1505 

Blood leukocytes Blood lymphocytes Blood neutrophils Blood myeloperoxidase 

pg
 / 

m
l

Control Lr1506 Lr1505 

Serum TNF-
pg

 / 
m

l

Control Lr1506 Lr1505 

Serum IL-1

pg
 / 

m
l

Control Lr1506 Lr1505 

Serum IL-8  

pg
 / 

m
l

Control Lr1506 Lr1505 

Serum MIP-1

pg
 / 

m
l

Control Lr1506 Lr1505 

Serum IL-6 

pg
 / 

m
l

Control Lr1506 Lr1505 

Serum TGF-

pg
 / 

m
l

Control Lr1506 Lr1505 

Serum IL-10  

a
b b

a

b b
a

a a

a

b
b

a
b b

a

b
ca

b b
a

a a

a
a

b
a a a

a b
b

Fig. 3. Effect of lactobacilli on blood leucocytes and cytokines induced by the nasal administration of the viral pathogen-associated molecular pattern poly(I:C). Effect of Lactobacillus
rhamnosus CRL1505 (Lr1505) or L. rhamnosus CRL1506 (Lr1506) administration on (A) the number of leukocytes, lymphocytes, neutrophils and peroxidase positive cells, and
(B) tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL-10, TGF-β, and macrophage inflammatory protein (MIP)-1α concentrations in blood after the challenge
with poly(I:C). The results represent data from three independent experiments. Results are expressed as mean ± SD. Values for bars with different letters were significantly
different (P b 0.05). Values for bars with shared letters do not differ significantly.

166 H. Zelaya et al. / International Immunopharmacology 19 (2014) 161–173



indicating systemic endothelial activation (Fig. 4). Treatments with
Lr1505 or Lr1506 were able to significant reduce vWF values, being
Lr1505 more effective than Lr1506 to achieve this effect (Fig. 4).

3.5. L. rhamnosus CRL1505 reduces activation of coagulation in the
respiratory tract

We studied the levels of TATc in BAL in order to determine the local
coagulation activation. Challengewith the poly(I:C) increased the levels
of this parameter in BAL; however the Lr1505 treatment significantly
reduced TATc in the respiratory tract when compared with Lr1506-
treated and control mice (Fig. 5A). In addition, we observed higher
levels of vWF in BAL of Lr1505 treated mice (Fig. 5A). In order to deter-
mine the pulmonary endothelial activation,we studied VCAM-1 expres-
sion by immunohistochemical techniques (Fig. 5B). Challenge with
poly(I:C) significantly increased VCAM-1 expression in lung. The con-
trol group showed positive reaction of moderate intensity and focal lo-
calization in pulmonary endothelia (Fig. 5B). VCAM-1 expression in
Lr1506 treatedmicewas not different from the control. On the contrary,
Lr1505 treated mice showed an intense positive reaction with a diffuse
location (Fig. 5B).

We also evaluated the changes of TF, TFPI, PAI-1 and TM lung expres-
sions before and after the nasal challenge with poly(I:C). No changes in
the expression of lung TF, TFPI, PAI-1 or TM were observed after
lactobacilli treatment and before poly(I:C) challenge (data not
shown). Increased expression of these factors was observed in all the
experimental groups, especially in the levels of TF and TM that were in-
creased 2.5 and 3.5 fold respectively, when compared to basal levels
(Fig. 6). TF expression in Lr1505 treated mice was significantly lower
than control and Lr1506 mice (Fig. 6). In addition, TM expression was
superior in Lr1505 treated mice when compared to the control and
Lr1506 groups (Fig. 6). TFPI and PAI-1 expressions in lungswere not dif-
ferent between Lr1505, Lr1506 and control mice (Fig. 6).

3.6. L. rhamnosus CRL1505 differentially modulates the coagulative response
to RSV or IFV infections

Wehave demonstrated recently that Lr1505 administration to infant
mice significantly improves their respiratory immune response against
RSV [15]. Then, we next addressed the question of whether Lr1505
affected the outcome and the immune-coagulative response to RSV or
IFV infections in adult mice. Adult mice orally treated with Lr1505 or
Lr1506 were challenged with 106 PFU of RSV. Similarly to our previous
work with infant mice [15], the virus was detected during 5 days post-
infection in lungs of all the experimental groups, with a peak of viral
loads on day 4 (Fig. 7A). However, Lr1505 treated mice showed signifi-
cantly lower lung virus counts than the Lr1506 treated and control mice
(Fig. 7A). We also observed that the challenge with RSV increased the
levels of the TATc in the respiratory tract of adult mice. Lr1505 treated
mice showed lower levels of BAL TATc when compared with Lr1506
and control mice (Fig. 7A). In addition, challenge with RSV significantly
increased the expression of TF, TFPI, PAI-1 and TM in lung although the
fold increases were lower than those observed in poly(I:C)-challenged
mice (Fig. 7B). Lr1505 was able to downregulate TF and upregulate
TM expression (Fig. 7B). No differences between the groups were
observed in TFPI and PAI-1 expressions (Fig. 7B).

Several works have established strong connections between IFV in-
fection and hemostasis; therefore we were interested in evaluating
the effect of immunobiotic bacteria in the coagulative response to IFV.
Similarly to RSV infection, IFV was detected during 5 days postinfection
in lungs of all the experimental groups,with a peakof viral loads ondays
3–4 (Fig. 8A). Lr1505 treated mice showed significantly lower IFV titers
in lung when compared with Lr1506 and control groups. The levels of
the TATc and the expression of TF, TFPI, PAI-1 and TM in the respiratory
tract of adultmice infectedwith IFVwere significantly higher than those
observed in RSV-challenged mice (Fig. 8). Lr1505 treated mice showed
lower concentrations of BAL TATc (Fig. 8A) and lower levels of TF
(Fig. 8B) when compared with Lr1506 and control mice. In addition,
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Lr1505 was able to upregulate TM expression while no differences
between the groups were observed in TFPI and PAI-1 expressions after
IFV infection (Fig. 8B).

3.7. IL-10 is involved in the capacity of L. rhamnosus CRL1505 to modulate
the coagulative response during respiratory virus infection

In order to evaluate the role of IL-10 in the effect of L. rhamnosus
CRL1505 on the coagulative response during RSV and IFV infections
we used blocking anti-IL-10R antibodies. As shown in Fig. 9, anti-IL-
10R antibodies did not induce significant effects in the reduction of
RSV or IFV titers induced by the CRL1505 strain. However, treatment
of mice with anti-IL-10R antibodies significantly abolished the capacity
of the immunobiotic strain to reduce concentrations of BAL TATc and
the expression of TF in lung as well as to increase the expression of
TM during RSV or IFV infections (Fig. 9).

4. Discussion

In general terms, respiratory viruses tend to evoke remarkably sim-
ilar innate and adaptive immune responses despite the variety of

receptors they use to gain entry into host cells and their genetics com-
position. In this regard, although genetically dissimilar, both RSV and
IFV generate dsRNA replication intermediates that act as TLR3 ligands
and contribute to immune system activation. IFV, a single-stranded
RNA virus has been shown to trigger type I IFN through recognition by
TLR3 inmyeloid DCs, fibroblasts or alveolar epithelial cells [30]. In addi-
tion, TLR3 expressed by respiratory epithelial cells and DCs contributes
at recognizing RSV during infection by binding to viral RNA [31].
Challenge-infection experiments in TLR3−/− mice demonstrated that
TLR3 does not alter respiratory viruses clearance but it is important for
the regulation of the pathogenic responses in the lung. It was shown
that RSV does not require TLR3 for effective clearance but an important
role of this PRR in the regulation of pulmonary immune microenviron-
ment and subsequent mucus hypersecretion [32] was suggested. In ad-
dition, LeGoffic et al. [33], indicated that a potent inflammatory reaction
occurs in the lung of wild-typemice after the IFV infection and that this
process is critically reduced or altered in TLR3−/− animals. Thus, in
comparison with wild-type mice, TLR3−/− animals showed clear re-
duced levels of inflammatory mediators in BAL, reduction of inflamma-
tory cells recruitment into the lungs and a paradoxical longer survival.
Additionally, siRNA-mediated knockdown of TLR3 indicated that this
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receptor was the predominant receptor responsible for inducing a
procoagulant state in endothelial cells [10]. Stimulation of endothelial
cells with poly(I:C) induces a dose- and time-dependent increase in TF
expression and downregulation of TM. In vivo studies showed that
poly(I:C) could upregulate the expression of proinflammatory and anti-
viral cytokines [34], influence vascular permeability [35] and increase
circulating D-dimer levels indicating that both coagulation and fibrino-
lysis are stimulated. Moreover, it was shown that D-dimer levels were
smaller in TLR3−/− mice after poly(I:C) challenge [10]. It was sug-
gested then, that the shift to a hypercoagulation state in certain respira-
tory virus infections could be due to a procoagulant cytokine status and
the direct stimulation of TF and repression of TM via TLR3.

Overall, these data suggest that TLR3 activation can be a critical
component in the modulation of viral infection-associated inflam-
matory and procoagulant diseases. The results of this work are in
line with these previous studies. In our experiments, administration
of poly(I:C) to the lungs of mice induced a marked increase in levels
of the proinflammatory mediators IL-6, TNF-α, IL-1β, IL-8 andMIP-1,
as well as increases in inflammatory cells. Moreover, in vivo TLR3
agonism by poly(I:C) also resulted in increased TATc levels and TF
expression in the respiratory tract, and reduced TM expression in
lung. These inflammatory-coagulative changes were accompanied
by pulmonary injury and impairment of lung function. In addition,
we demonstrated here that the inflammatory-coagulative response
induced by the nasal administration of poly(I:C) could be differen-
tially modulated by the preventive administration of the probiotic
bacterium L. rhamnosus CRL1505. We observed that the CRL1505
strain was able to significantly reduce activation of coagulation in
blood and in the respiratory tract after the nasal challenge with
poly(I:C). Those effects were associated to the capacity of the probiotic
treatment to reduce the expression of TF and increase levels of TM in
lungs after the stimulation with the TLR3 agonist.

We further investigated the effect of viral infections in pulmonary
coagulation. Evaluation of coagulation activation and viral titers was
performed on day 4 postinfection, the time point at which both RSV
and IFV peak. Both respiratory viruses were able to induce activation
of coagulation in the respiratory tract as observed by the increased
levels of TATc in BAL samples, and the changes in the expression of TF
and TM in lungs. However, procoagulant changes induced by IFV were
markedly higher than those induced by RSV. In fact, TATc levels and
lung TF expression in IFV-infected mice were 1.8 and 1.6 fold higher
than in RSV-infected animals. Respiratory viruses can induce a direct
procoagulant state through infection of endothelial and/or monocytes,
or indirectly by the induction of proinflammatory cytokines such as IL-
6 [1,2]. The infection of endothelial cells can result in the activation of
these cells and, consequently, the activation of coagulation. In vitro
and in vivo studies have shown that a variety of prothrombotic viruses
are able to infect endothelial cells. In this regard, it has been demon-
strated that IFV and other respiratory viruses can activate coagulation
by increasing TF expression on endothelial cell surfaces [1,2]. Visseren
et al. [1] determined the effect of infection with various respiratory vi-
ruses on the procoagulant activity of intact endothelial cell monolayers.
Authors demonstrated that both RSV and IFVwere able to infect human
umbilical vein endothelial cells. Moreover, the study showed that both
respiratory viruses induced a procoagulant activity by stimulating the
expression of TF. However, procoagulant activity and TF antigen expres-
sion by endothelial cells were significantly higher in IFV-infected cells
when compared to those challenged with RSV. In addition, increased
numbers of intravascular thrombi and fibrin deposition in lungs were
found in cases of influenza in both animal models and clinical studies
[3,36,37]. However, extensive fibrin depositions have not been de-
scribed in lung tissue from patients or animals infected with RSV.
Then, our results are in line with these previous studies showing a
higher procoagulant activity for IFV when compared to RVS.
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Our data also showed that the preventive administration of
L. rhamnosus CRL1505 significantly reduced both RSV and IFV lung
viral titers. Previously it was shown that oral administration of
L. rhamnosus CRL1505 to infant mice significantly reduces lung viral
loads and tissue injuries after the challenge with RSV and that the pro-
tective effect achieved by the CRL1505 strain is related to its capacity to
differentially modulate the respiratory antiviral immune response [15].
Moreover, our studies demonstrated that L. rhamnosus CRL1505 is able
to increase the number of CD3+CD4+IFN-γ+ T cells in the gut, induce
a mobilization of these cells into the respiratory mucosa, and improve
local production of IFN-γ and the activity of lung antigen presenting
cells [13,15]. In this work we extend these findings by demonstrating
that the CRL1505 strain is also able to improve resistance of adult immu-
nocompetent mice against IFV and RSV. In addition, the results of this
work showed that L. rhamnosus CRL1505 significantly reduced the

activation of coagulation in both IFV- and RSV-infected mice. As
observed in poly(I:C) challenge experiments, in L. rhamnosus
CRL1505-treated mice infected with IFV or RSV, levels of TATc and ex-
pression of TFwere significantly lower than the respective controls. Sev-
eral studies have demonstrated that some orally administered
immunobiotics do have the ability to stimulate respiratory immunity
and increase resistance to viral infections, including IFV, RSV and pneu-
monia virus of mice [11]. Moreover, during the last decade scientists
have significantly advanced in the knowledge of the cellular andmolec-
ular mechanisms involved in the protective effect of immunobiotics in
the respiratory tract, and demonstrated that orally administered
probiotics are able to increase NK cells and macrophages activities,
modulate type I IFN and IFN-γ production and, antigen presenting
cells functions in lungs infected with viruses, allowing an improved im-
mune response and a higher resistance to the infection [11]. However,
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the effect of immunobiotics on the inflammation–coagulation interac-
tion during respiratory viral infections was not studied until now.
Then, this work is the first demonstration of the beneficial modulation
of the immune-coagulative response during respiratory viral infection
induced by a probiotic bacterium.

Future research will concentrate in elucidating the mechanism(s) by
which L. rhamnosus CRL1505 influences coagulation after poly(I:C) chal-
lenge or during IFV or RSV infections. From the information obtaineduntil
now, it could be speculated that the modulation of the inflammatory
response induced by the probiotic strain would indirectly modulate the
coagulation system. In fact, the experiments performed here using anti-
IL-10R blocking antibodies clearly demonstrated that the variations in
IL-10 levels are important for the regulation of coagulation induced by

L. rhamnosus CRL1505. We have previously demonstrated that orally
administered L. rhamnosus CRL1505 significantly increased IL-10 levels
that contribute to protection against inflammatory damage in poly(I:C)-
and RSV-challenged mice. Moreover, blocking IL-10R significantly re-
duced the capacity of the CRL1505 strain to protect against lung tissue
damage although it did not affect viral load [15]. In addition, we demon-
strated in this study that blocking IL-10R impaired the ability of
L. rhamnosus CRL1505 treatment to reduce activation of coagulation in
mice infected with IFV or RSV. We also observed previously that
CRL1505-treated mice were able to early increase the levels of TNF and
IL-6 in the respiratory tract when compared to controls while the levels
of TNF were significantly lower later in RSV infection [15]. Then, the
early increase of proinflammatory cytokines together with the improved
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levels of IFN-γ explains the higher capacity of CRL1505-treated mice
to reduce viral loads while the improved levels of IL-10 induced during
infection would lead to markedly reduced severity in lung damage
through the modulation of inflammation and coagulation. In support of
this hypothesis, several works have described beneficial effects of IL-10
during respiratory viral infections. Sun et al. [38] showed that IL-10 pre-
vents immunopathology and lethal disease during acute IFV infection.
On the other hand, IL-10 also seems to play a crucial role in controlling
disease severity in RSV infection [39,40]. It was found that IL-10 deficien-
cy during RSV challenge did not affect viral load, but led to markedly in-
creased disease severity with enhanced weight loss, delayed recovery
and a greater influx of inflammatory cells into the lung and airways and
enhanced release of inflammatory mediators [41]. Additionally, IL-10
has been shown to downregulate TF expression and inhibit procoagulant
activity in human and mice monocytes and monocytes/endothelial cell
co-cultures in a dose-dependent manner [42,43].

In addition, our present data showed that L. rhamnosus CRL1506 has
no ability to beneficially modulate the immune-coagulative response in
the respiratory tract despite its capacity to improve coagulation at the
systemic level. This fact could be explained by the ability of this strain
to induce changes in cytokines profiles in blood and not in the respira-
tory tract as we demonstrated here and in previously published works
[13]. Then, these results confirm our hypothesis that changes in cyto-
kines profiles are responsible for the modifications in the immune-
coagulative response during viral respiratory infections.

Acute respiratory tract infections are associatedwith an increased risk
of acute ischemic heart disease, stroke and venous thromboembolism
[6,44]. A transient change in local hemodynamic factors, coagulation acti-
vation, reduced generation of anticoagulant activated protein C (APC), in-
hibition of fibrinolysis and endothelial cell perturbation as a result of
systemic inflammation might be underlying mechanisms [45]. Indeed,
it has been shown that respiratory viruses are able to activate coagula-
tion, causing a reduction in clotting time and an increase in the expres-
sion of TF and thrombin generation; the latter reduced levels of protein

C are risk factors for thrombotic diseases during respiratory viral infec-
tions [1,3]. In this regard, the effect of a naturally occurring acute respira-
tory tract infection on hemostatic proteins in human subjects was
evaluated by vanWissen et al. [46]who found that respiratory tract infec-
tions result in endothelial cell perturbation and an increased fibrinolytic
state with the potential for increased coagulation activation. Because en-
dothelial cell perturbation and increased levels of hemostatic markers,
such as vWF, D-dimer, plasmin–α2–antiplasmin complexes, PAI-1 and
resistance to APC have been suggested to increase the risk of ischemic
heart disease and venous thromboembolism, authors suggested that
the induced hemostatic changes may form a link between acute respira-
tory tract infections and acute atherothrombotic disease. Then, the results
presented in this work suggest that probiotic bacteria could be an inter-
esting alternative not only to prevent or reduce the severity of respiratory
viral infections, but in addition to reduce the risk of atherothrombotic dis-
eases associated to acute respiratory tract infections.

In summary, our findings reveal for the first time that a probiotic
bacterium is able to modulate lung immune-coagulative reaction trig-
gered by TLR3 activation. We demonstrated that probiotic bacteria
could be of value to beneficiallymodulate thefine tunebalance between
clearing the virus and controlling immune-coagulative responses in the
respiratory tract, allowing normal gas exchange to bemaintained in the
face of a viral attack. Our data also pinpoint a crucial role for IL-10 in
the immune protection induced by L. rhamnosus CRL1505 during respi-
ratory viral infections. These observations might be helpful to propose
new preventive or therapeutic approaches to better control virus-
inflammatory lung damage using probiotic functional foods.
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Fig. 9. Role of IL-10 in the immunoregulatory effect of Lactobacillus rhamnosus CRL1505 in the resistance and coagulation activation during respiratory viruses infections. Micewere orally
treated with Lactobacillus rhamnosus CRL1505 (Lr1505), intraperitoneally injected with anti-IL-10R antibodies and then challenged with (A) respiratory syncytial virus or (B) influenza
virus. Untreated and isotype-treated mice were used as controls. Virus titers, coagulation activation (TATc levels) and expression of tissue factor (TF), and thrombomodulin (TM) were
examined in lungs. Results are expressed as mean ± SD. Values for bars with different letters were significantly different (P b 0.05). Values for bars with shared letters do not differ
significantly.
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